Proposal for a Leaky Integrate Fire Spiking Neuron Using Voltage Driven Domain Wall Motion

نویسندگان

  • Akhilesh Jaiswal
  • Amogh Agrawal
  • Kaushik Roy
چکیده

Conventional von-Neumann computing models have achieved remarkable feats for the past few decades. However, they fail to deliver the required efficiency for certain basic tasks like image and speech recognition when compared to biological systems. As such, taking cues from biological systems, novel computing paradigms are being explored for efficient hardware implementations of recognition/classification tasks. The basic building blocks of such neuromorphic systems are neurons and synapses. Towards that end, we propose a leaky-integrate-fire (LIF) neuron and a programmable non-volatile synapse using domain wall motion induced by magneto-electric effect. Due to a strong elastic pinning between the ferro-magnetic domain wall (FM-DW) and the underlying ferro-electric domain wall (FEDW), the FM-DW gets dragged by the FE-DW on application of a voltage pulse. The fact that FE materials are insulators allows for pure voltage-driven FM-DW motion, which in turn can be used to mimic the behaviors of biological spiking neurons and synapses. The voltage driven nature of the proposed devices allows energy-efficient operation. A detailed device to system level simulation framework based on micromagnetic simulations has been developed to analyze the feasibility of the proposed neurosynaptic devices. We also demonstrate that the energy-efficient voltage-controlled behavior of the proposed devices make them suitable for dynamic on-line in spiking neural networks (SNNs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell

Memory resistor or memristor is already fabricated successfully using current nano dimension technology. Based on its unique hysteresis, the amount of resistance remains constant over time, controlled by the time, the amplitude, and the polarity of the applied voltage. The unique hysteretic current-voltage characteristic in the memristor causes this element to act as a non-volatile resistive me...

متن کامل

On the Performance of Voltage Stepping for the Simulation of Adaptive, Nonlinear Integrate-and-Fire Neuronal Networks

In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the ...

متن کامل

Effects caused due to External noise current on Leaky Integrate and Fire model .

We assess both numerically and theoretically how external noise current affect the behavior of Leaky Integrate and Fire model. Integrate and fire model works better in asynchronous inputs environment in case of signal to noise ratio of efferent spike trains. External noise and sub threshold stimulus are subject to all the neurons. Response of the models is totally different to correlated inputs...

متن کامل

Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fracti...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.06942  شماره 

صفحات  -

تاریخ انتشار 2017